Volatility of linear and nonlinear time series.
نویسندگان
چکیده
Previous studies indicated that nonlinear properties of Gaussian distributed time series with long-range correlations, u(i), can be detected and quantified by studying the correlations in the magnitude series |u(i)|, the "volatility." However, the origin for this empirical observation still remains unclear and the exact relation between the correlations in u(i) and the correlations in |u(i)| is still unknown. Here we develop analytical relations between the scaling exponent of linear series u(i) and its magnitude series |u(i)|. Moreover, we find that nonlinear time series exhibit stronger (or the same) correlations in the magnitude time series compared with linear time series with the same two-point correlations. Based on these results we propose a simple model that generates multifractal time series by explicitly inserting long range correlations in the magnitude series; the nonlinear multifractal time series is generated by multiplying a long-range correlated time series (that represents the magnitude series) with uncorrelated time series [that represents the sign series sgn (u(i))]. We apply our techniques on daily deep ocean temperature records from the equatorial Pacific, the region of the El-Ninõ phenomenon, and find: (i) long-range correlations from several days to several years with 1/f power spectrum, (ii) significant nonlinear behavior as expressed by long-range correlations of the volatility series, and (iii) broad multifractal spectrum.
منابع مشابه
Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...
متن کاملEfficient estimation of a semiparametric dynamic copula model
Outline Introduction Semi-parametric dynamic copula Motivation Local likelihood estimation Variance of the estimator Bias of the estimator Bandwidth selection Estimation of joint likelihood Modeling of marginal distributions Simulations and applications Simulations Empirical example Conclusions Problems and Solutions Problems Modeling dependence is critical for financial time series Model volat...
متن کاملNonlinear Features of Realized Fx Volatility
This paper investigates nonlinear features of FX volatility dynamics using estimates of daily volatility based on the sum of intraday squared returns. Measurement errors associated with using realized volatility to estimate ex post latent volatility imply that standard time series models of the conditional variance become variants of an ARMAXmodel. We explore nonlinear departures from these lin...
متن کاملA Unified Approach to Estimating and Modeling Linear and Nonlinear Time Series
In this article, we propose a unified approach to estimating and modeling univariate time series. The approach applies to both linear and nonlinear time series models and can be used to discriminate non-nested nonlinear models. For example, it can discriminate between threshold autoregressive and bilinear models or between autoregressive and moving average models. It can also be used to estimat...
متن کاملRCA models with GARCH innovations
Rapid developments of time series models and methods addressing volatility in computational finance and econometrics have been recently reported in the financial literature. The non-linear volatility theory either extends and complements existing time series methodology by introducing more general structures or provides an alternative framework (see Abraham and Thavaneswaran [B. Abraham, A. Tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 72 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2005